Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 89(2): 928-938, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38181049

RESUMO

Chiral diarylmethylamides are a privileged skeleton in many bioactive molecules. However, the enantioselective synthesis of such molecules remains a long-standing challenge in organic synthesis. Herein, we report a chiral bifunctional squaramide catalyzed asymmetric aza-Michael addition of amides to in situ generated ortho-quinomethanes, affording enantioenriched diarylmethylamides in good yields with excellent enantioselectivities. This work not only provides a new strategy for the construction of the diarylmethylamides but also represents the practicability of amides as nitrogen-nucleophiles in asymmetric organocatalysis.

2.
J Org Chem ; 89(2): 975-985, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38181067

RESUMO

Enantioselective synthesis of eight-membered N-heterocycles represents a long-standing challenge in organic synthesis. Here, by combining the squaramide and DBU catalysis, a sequential asymmetric conjugate addition/cyclization reaction between benzofuran-derived azadienes and ynones has been well-developed, providing straightforward access to chiral eight-membered N-heterocycles in high yields with stereoselectivities. This protocol features the use of a bifunctional squaramide catalyst for controlling the enantioselectivity of products, while the DBU is utilized to achieve intramolecular cyclization and improve the diastereoselectivity of products.

3.
J Exp Bot ; 74(22): 6964-6974, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37343122

RESUMO

Vascular tissues serve a dual function in plants, both providing physical support and controlling the transport of nutrients, water, hormones, and other small signaling molecules. Xylem tissues transport water from root to shoot; phloem tissues transfer photosynthates from shoot to root; while divisions of the (pro)cambium increase the number of xylem and phloem cells. Although vascular development constitutes a continuous process from primary growth in the early embryo and meristem regions to secondary growth in the mature plant organs, it can be artificially separated into distinct processes including cell type specification, proliferation, patterning, and differentiation. In this review, we focus on how hormonal signals orchestrate the molecular regulation of vascular development in the Arabidopsis primary root meristem. Although auxin and cytokinin have taken center stage in this aspect since their discovery, other hormones including brassinosteroids, abscisic acid, and jasmonic acid also take leading roles during vascular development. All these hormonal cues synergistically or antagonistically participate in the development of vascular tissues, forming a complex hormonal control network.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Meristema , Raízes de Plantas , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hormônios/metabolismo , Água/metabolismo , Regulação da Expressão Gênica de Plantas
4.
Opt Express ; 31(4): 5910-5926, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36823861

RESUMO

The monocular visual Simultaneous Localization and Mapping (SLAM) can achieve accurate and robust pose estimation with excellent perceptual ability. However, accumulated image error over time brings out excessive trajectory drift in a GPS-denied indoor environment lacking global positioning constraints. In this paper, we propose a novel optimization-based SLAM fusing rich visual features and indoor GPS (iGPS) measurements, obtained by workshop Measurement Position System, (wMPS), to tackle the problem of trajectory drift associated with visual SLAM. Here, we first calibrate the spatial shift and temporal offset of two types of sensors using multi-view alignment and pose optimization bundle adjustment (BA) algorithms, respectively. Then, we initialize camera poses and map points in a unified world frame by iGPS-aided monocular initialization and PnP algorithms. Finally, we employ a tightly-coupled fusion of iGPS measurements and visual observations using a pose optimization strategy for high-accuracy global localization and mapping. In experiments, public datasets and self-collected sequences are used to evaluate the performance of our approach. The proposed system improves the result of absolute trajectory error from the current state-of-the-art 19.16mm (ORB-SLAM3) to 5.87mm in the public dataset and from 31.20mm to 5.85mm in the real-world experiment. Furthermore, the proposed system also shows good robustness in the evaluations.

5.
Biomimetics (Basel) ; 7(3)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36134939

RESUMO

The lightweight property of helical composite spring (HCS) applied in the transportation field has attracted more and more attention recently. However, it is difficult to maintain stiffness and fatigue resistance at the same time. Herein, inspired by collagen fibers in bone, a bionic basalt fiber/epoxy resin helical composite spring is manufactured. The collagen fibers consist of nanoscale hydroxyapatite (increases stiffness) and collagen molecules composed of helical amino acid chains (can increase fatigue resistance). Such a helical structure of intercalated crystals ensures that bone has good resistance to fracture. Specifically, we first investigated the effect of adding different contents of NS to basalt fibers on the stiffness and fatigue properties of an HCS. The results show that the optimal NS content of 0.4 wt% resulted in 52.1% and 43.5% higher stiffness and fatigue properties of an HCS than those without NS, respectively. Then, two braided fiber bundles (TS-BFB) and four braided fiber bundles (FS-BFB) were designed based on the helical structure of amino acid chains, and the compression tests revealed that the maximum load resistance of TS-BFB and FS-BFB was increased by 29.2% and 44%, respectively, compared with the conventional single fiber bundle (U-BFB). The superior mechanical performance of TS-BFB and FS-BFB is attributed to the more adequate bonding of 0.4 wt% NS to the epoxy resin and the multi-fiber bundles that increase the transverse fiber content of the spring. The findings in this work introduce the bionic collagen fiber structure into the design for an HCS and provide a new idea to improve the spring performance.

6.
Front Plant Sci ; 13: 805633, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35310653

RESUMO

Tetraspanins (TETs) function as key molecular scaffolds for surface signal recognition and transduction via the assembly of tetraspanin-enriched microdomains. TETs' function in mammalian has been intensively investigated for the organization of multimolecular membrane complexes, regulation of cell migration and cellular adhesion, whereas plant TET studies lag far behind. Animal and plant TETs share similar topologies, despite the hallmark of "CCG" in the large extracellular loop of animal TETs, plant TETs contain a plant specific GCCK/RP motif and more conserved cysteine residues. Here, we showed that the GCCK/RP motif is responsible for TET protein association with the plasma membrane. Moreover, the conserved cysteine residues located within or neighboring the GCCK/RP motif are both crucial for TET anchoring to membrane. During virus infection, the intact TET3 protein enhanced but GCCK/RP motif or cysteine residues-deficient TET3 variants abolished the cell-to-cell movement capability of virus. This study provides cellular evidence that the GCCK/RP motif and the conserved cysteine residues are the primary determinants for the distribution and function of TET proteins in Arabidopsis.

7.
Plant Cell ; 34(1): 374-394, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34726756

RESUMO

The assembly of macromolecules on the plasma membrane concentrates cell surface biomolecules into nanometer- to micrometer-scale clusters (nano- or microdomains) that help the cell initiate or respond to signals. In plant-microbe interactions, the actin cytoskeleton undergoes rapid remodeling during pathogen-associated molecular pattern-triggered immunity (PTI). The nanoclustering of formin-actin nucleator proteins at the cell surface has been identified as underlying actin nucleation during plant innate immune responses. Here, we show that the condensation of nanodomain constituents and the self-assembly of remorin proteins enables this mechanism of controlling formin condensation and activity during innate immunity in Arabidopsis thaliana. Through intrinsically disordered region-mediated remorin oligomerization and formin interaction, remorin gradually recruits and condenses formins upon PTI activation in lipid bilayers, consequently increasing actin nucleation in a time-dependent manner postinfection. Such nanodomain- and remorin-mediated regulation of plant surface biomolecules is expected to be a general feature of plant innate immune responses that creates spatially separated biochemical compartments and fine tunes membrane physicochemical properties for transduction of immune signals in the host.


Assuntos
Citoesqueleto de Actina/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Forminas/metabolismo , Imunidade Vegetal/genética , Actinas/metabolismo , Arabidopsis/genética , Imunidade Inata/genética
8.
Nat Plants ; 7(11): 1485-1494, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34782768

RESUMO

During plant development, a precise balance of cytokinin is crucial for correct growth and patterning, but it remains unclear how this is achieved across different cell types and in the context of a growing organ. Here we show that in the root apical meristem, the TMO5/LHW complex increases active cytokinin levels via two cooperatively acting enzymes. By profiling the transcriptomic changes of increased cytokinin at single-cell level, we further show that this effect is counteracted by a tissue-specific increase in CYTOKININ OXIDASE 3 expression via direct activation of the mobile transcription factor SHORTROOT. In summary, we show that within the root meristem, xylem cells act as a local organizer of vascular development by non-autonomously regulating cytokinin levels in neighbouring procambium cells via sequential induction and repression modules.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Citocininas , Raízes de Plantas/crescimento & desenvolvimento , Proteínas de Arabidopsis , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Oxirredutases , Transdução de Sinais , Transativadores
9.
Opt Express ; 29(6): 8967-8984, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33820336

RESUMO

Directed at the strong correlation among the input parameters and long measurement chain, which are difficult for uncertainty analysis with the guide of the expression of uncertainty in the measurement (GUM) method, a novel dynamic stereo vision measurement system based on the quaternion theory is presented to reduce the orthogonality restrictions of shafting manufacturing and application. According to the quaternion theory in the kinematic model of the cameras and the analytical solution of uncertainty with the GUM method, the complete, detailed, and continuous uncertainty results of the full-scale measurement space can be obtained. Firstly, one-dimensional turntables and rigid connections are utilized to form the motion cores and the automatic control carriers in the system. Secondly, the novel measurement model is used in the measurement process to shorten the calibration and measurement chains. Once the system based on the novel measurement model is set up, the analytical solution of uncertainty is utilized in the accuracy process. During the analysis process, the strong correlation among the extrinsic parameters is decoupled by introducing virtual circles and the measurement strategy with the GUM method. Through analyzing the relationship among the attitude angles, the major factors which influence the uncertainties in each axis and the final uncertainty are clarified. Moreover, the analytical continuous uncertainty maps for the uncertainties along each axis, combined standard uncertainty, and the expanded uncertainty are illustrated and the uncertainty variation tendency is declared. Finally, the analytical solution of uncertainty with the GUM method proposed in this paper predicts the uncertainty in the full-scale space and provides a new idea of the uncertainty analysis for the complicated combined measurement system.

10.
New Phytol ; 229(2): 963-978, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32901934

RESUMO

To adapt to the diverse array of biotic and abiotic cues, plants have evolved sophisticated mechanisms to sense changes in environmental conditions and modulate their growth. Growth-promoting hormones and defence signalling fine tune plant development antagonistically. During host-pathogen interactions, this defence-growth trade-off is mediated by the counteractive effects of the defence hormone salicylic acid (SA) and the growth hormone auxin. Here we revealed an underlying mechanism of SA regulating auxin signalling by constraining the plasma membrane dynamics of PIN2 auxin efflux transporter in Arabidopsis thaliana roots. The lateral diffusion of PIN2 proteins is constrained by SA signalling, during which PIN2 proteins are condensed into hyperclusters depending on REM1.2-mediated nanodomain compartmentalisation. Furthermore, membrane nanodomain compartmentalisation by SA or Remorin (REM) assembly significantly suppressed clathrin-mediated endocytosis. Consequently, SA-induced heterogeneous surface condensation disrupted asymmetric auxin distribution and the resultant gravitropic response. Our results demonstrated a defence-growth trade-off mechanism by which SA signalling crosstalked with auxin transport by concentrating membrane-resident PIN2 into heterogeneous compartments.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácidos Indolacéticos , Lipídeos , Proteínas de Plantas , Raízes de Plantas , Ácido Salicílico
11.
J Opt Soc Am A Opt Image Sci Vis ; 37(3): 435-443, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32118927

RESUMO

In this paper, an improved calibration method based on vanishing constraints is proposed for calculating the extrinsic parameters of cameras. First, we come up with a improved target based on the conventional target with two groups of orthogonal parallel lines. The novel target is composed of two groups of parallel lines with a certain angle range from 80° to 90°, which can reduce the difficulty of target production and the manufacturing cost. Furthermore, in the optimization process, we design a new function with a more robust penalty factor instead of using the experienced values to get the extrinsic parameters for the binocular vision sensors. Finally, on account of using the improved target and the novel optimiazation function, the proposed method is more flexible and robust compared with Zhang's method.

12.
Proc Natl Acad Sci U S A ; 116(42): 21274-21284, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31575745

RESUMO

Plasmodesmata (PD) are plant-specific membrane-lined channels that create cytoplasmic and membrane continuities between adjacent cells, thereby facilitating cell-cell communication and virus movement. Plant cells have evolved diverse mechanisms to regulate PD plasticity in response to numerous environmental stimuli. In particular, during defense against plant pathogens, the defense hormone, salicylic acid (SA), plays a crucial role in the regulation of PD permeability in a callose-dependent manner. Here, we uncover a mechanism by which plants restrict the spreading of virus and PD cargoes using SA signaling by increasing lipid order and closure of PD. We showed that exogenous SA application triggered the compartmentalization of lipid raft nanodomains through a modulation of the lipid raft-regulatory protein, Remorin (REM). Genetic studies, superresolution imaging, and transmission electron microscopy observation together demonstrated that Arabidopsis REM1.2 and REM1.3 are crucial for plasma membrane nanodomain assembly to control PD aperture and functionality. In addition, we also found that a 14-3-3 epsilon protein modulates REM clustering and membrane nanodomain compartmentalization through its direct interaction with REM proteins. This study unveils a molecular mechanism by which the key plant defense hormone, SA, triggers membrane lipid nanodomain reorganization, thereby regulating PD closure to impede virus spreading.


Assuntos
Lipídeos de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Plasmodesmos/metabolismo , Ácido Salicílico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Comunicação Celular/fisiologia , Membrana Celular/metabolismo , Glucanos/metabolismo , Microdomínios da Membrana/metabolismo , Células Vegetais/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais/fisiologia
13.
Hortic Res ; 6: 47, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30962940

RESUMO

Effective cell-to-cell communication allows plants to fine-tune their developmental processes in accordance with the prevailing environmental stimuli. Plasmodesmata (PD) are intercellular channels that span the plant cell wall and serve as cytoplasmic bridges to facilitate efficient exchange of signaling molecules between neighboring cells. The identification of PD-associated proteins and the subsequent elucidation of the regulation of PD structure have provided vital insights into the role of PD architecture in enforcing crucial cellular processes, including callose deposition, ER-Golgi-based secretion, cytoskeleton dynamics, membrane lipid raft organization, chloroplast metabolism, and cell wall formation. In this review, we summarize the emerging discoveries from recent studies that elucidated the regulatory mechanisms involved in PD biogenesis and the dynamics of PD opening-closure. Retrospectively, PD-mediated cell-to-cell communication has been implicated in diverse cellular and physiological processes that are fundamental for the development of horticultural plants. The potential application of PD biotechnological engineering represents a powerful approach for improving agronomic traits in horticultural crops in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...